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Abstract

Based upon Il�yushin�s postulate and the plastic potential theory, a procedure for calculating the abrupt change in
stresses from the peak strength surface to the residual strength surface is proposed. The stability criterion for a brittle-
plastic body loaded proportionally is presented. Finally, three examples have been solved analytically and numerically,
including an engineering example of the steep rock slope of a shiplock system for the Three Gorges hydroelectric power
project in China.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The advent of the ‘‘stiff’’ testing machines with advanced control systems has made possible the study of
the stress–strain behavior of brittle-plastic hard rocks. Great progresses have been made in the study of the
brittle rocks in the last two decades. However, up to now, there has been no mechanical model that is capa-
ble of describing all aspects of deformation of brittle rocks.
So far, several mechanical models that can be adopted to simulate the deformation of brittle rocks have

distinct concerns. For example, the main advantage of the micromechanical models (see Wong, 1982;
Fredrich and Wong, 1986; Fredrich et al., 1989; Kemeny and Cook, 1991) is the ability to describe
the microstructural microcrack kinetics and to reproduce some macroscopic behaviors of brittle rock
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specimens in test. A quite complete review on micromechanics was given by Kemeny and Cook (1991). If
the process of the strain localization is emphasized, several conceptually different approaches for modeling
of localized deformation are available, including the use of the Cosserat continuum (de Borst, 1991; Muhl-
haus and Vardoulakis, 1987), the non-local theory (Pijaudier-Cabot and Bazant, 1987), gradient-dependent
formulations (de Borst and Muhlhaus, 1992, 1993; Roy et al., 2003), strong discontinuity approaches (Reg-
ueiro and Borja, 2000; Wells and Sluys, 2001, etc.). Bardet (1990), Pietruszczak and Xu (1995), present
quite comprehensive reviews for two development phases till 1990 and 1995, respectively. In addition,
the statistical method (Krajcinovic and Mastilovic, 1999; Mastilovic and Krajcinovic, 1999, etc.) seems
to be a promising way to describe the deformation of the brittle rock.
On the other hand, if main concerns focus on the failure zone�s distribution and the degree of deforma-

tion in practice, some simpler approaches based on the classical continuum theory, such as Zhang and
Subhash (2001), Hajiabdolmajida et al. (2002), Lo and Lee (1973), as well as continuous damage models
(e.g., Krajcinovic and Vujosevic, 1998; Ju, 1989; Etienne et al., 1998; Chiarelli et al., 2003), are also prac-
tical. Though there might exist mesh dependency in some aspects to a certain extent using these approaches,
estimation of the failure zone�s distribution and the degree of failure are quite accurate. In many situations,
the failure zone�s distribution and the degree of failure, for example, the excavation disturbed zones (EDZ),
are sufficient to decide the lengths of anchors and/or bolts to be designed to reinforce the failure zones.
Therefore, these approaches based on the classical continuum theory have still been adopted in engineering
computations.
The failure mechanism of brittle rocks is stated in Wawersik and Brace (1971), Steif (1984), Sammis and

Ashby (1986), Martin and Chandler (1994) and Atkinson (1984), and Litewka and Debinski (2003). Based
upon the phenomenological description, it is generally recognized that a salient feature of a brittle-plastic
material is that it displays an abrupt post-peak drop in stress on the stress–strain (r–e). In other words,
when a point in a stress space is loaded from its initial elastic state to the peak strength surface (PSS), stress
will drop abruptly to the residual strength surface (RSS). It is this discontinuous change of the yield surface
in the stress space that causes difficulties in an analysis. The determination of this abrupt drop in stress from
PSS to RSS has been a key issue in the finite element analysis of a brittle-plastic rock mass. To date, a num-
ber of computational procedures have been proposed, involving different assumptions and hence leading to
different results.
In this paper, a procedure based on the generalization of the classical theory of plasticity for determining

the abrupt change in stresses for a brittle-plastic material is proposed. The proposed method does not
require any parameters for describing the microcracks of the rock. Derived from the classical theory of
plasticity, the proposed concepts and methodology are more readily accepted by engineers, and it is also
convenient to implement in finite element analysis.
The abrupt changes in stress of a brittle material may result in unstable behavior for the majority of rock

structures. In this paper, a formulation on the stability of a brittle body loaded proportionally is presented.
Finally, the effectiveness of the proposed methods is examined using two simple examples where the ana-
lytical solutions are available. The proposed methods are also applied to analyze the steep rock slope of a
shiplock system of the Three Gorges hydroelectric project in China.
2. Brittle-plastic rock

In general, there are two main types of post-peak r–e behavior of brittle rocks as shown in Fig. 1. If the
declining segment of curve no. I or no. II is very near to the perpendicular line AB under certain range of
confining pressures, this type of rock can be regarded as a brittle-plastic rock to be studied in this paper. An
idealized model is shown in Fig. 2, in which �r and �e are, respectively, the equivalent stress and equivalent
strain corresponding to a certain yield criterion. Lo and Lee (1973) discussed this model in the stability
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Fig. 2. Brittle-plastic model.
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analysis of slopes. At present, this model has been applied in many cases, for example, Hajiabdolmajida
et al. (2002), Wang and Dussealt (1994). This model is described as follows. When a point in the rock is
loaded from its initial elastic state to its peak strength at point A, it will drop rapidly to the point B on
the residual strength line BC. After this, continuous loading will lead to a r–e relation that follows on line
BC and cause plastic deformation. Otherwise, unloading at some point on BC will result in some elastic
responses.
For unstable materials, Il�yushin has proposed a thermodynamic postulate (Chen and Han, 1988), which

is more extensive than Drucker�s postulate and is stated as follows: After any element in a body undergoes a
closed cycle of strain, the work done by stress in the closed cycle of strain is not negative. If a material sat-
isfies this postulate, a complete system of the elasto-plastic constitutive theory for the material can be
formulated.
For a system with one degree of freedom as shown in Fig. 3(a), obviously, any closed cycle of strain far

from point A would make the work done by stress not negative. Now taking a closed cycle of strain near
point A, the corresponding stress path is D! A! B! E! F. The magnitude of the work done by stress
along each segment is the area enclosed by the segment, the two perpendicular lines passing the two end
points of the segment and the e axis. The sign of the work done is the same as de (assuming that stress is
positive here). Therefore the work done is positive along DA and BE, zero along AB, and negative along
EF. After a complete closed cycle of strain, the pure work done by stress is the area of the polygon DABEF
and its value is positive. Therefore, any brittle-plastic material can be included in Il�yushin�s postulate.
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Fig. 3. Work done by stress in one cycle of strain: (a) brittle-plastic material, (b) material of type II.
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However, the situation is not true for rock of curve no. II characteristic, particularly when we take a
closed cycle of strain at point A as shown in Fig. 3(b). The corresponding stress path is A! B! E.
The magnitude of the work done by stress along this path is equal to the area of the triangle ABE, and
its value is negative. Therefore a rock with the characteristic of curve no. II does not satisfy Il�yushin�s
postulate.
3. Limitation of classical theory of plasticity for softening material

In order to evade the indeterminacy of the stress-drop in brittle-plastic materials, some researchers
would consider brittle damage as a continuous strain-softening process as shown in Fig. 4. However this
approach does not agree with the deformation characteristics of brittle-plastic rocks, because for brittle-
plastic rocks the process from PSS to RSS is not gradual but abrupt, and any stress state during dropping
is also not recoverable. Obviously, the continuous strain-softening model cannot adequately describe these
phenomena of brittle-plastic rocks.
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Fig. 4. The continuous strain softening model.
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Furthermore, even if the continuous strain-softening model is adopted, it is impossible to carry out the
computation by taking the real softening segment under the classical elasto-plasticity framework, because
the classical plasticity theory has a limitation to the rate of the strain softening. In the following, we will
point that the classical constitutive integration is of significance only if the rate of softening is relatively low.
Suppose the yield surface of rock is
F ðr;wpÞ ¼ 0; ð1Þ
where wp is the plastic work, defined as
wp ¼
Z

rT dep: ð2Þ
For the case of plastic loading, the stress increments are given by (Zienkiewicz and Taylor, 1991)
dr ¼ Depde; ð3:1Þ

Dep ¼ D�Dp; Dp ¼
1

M
D
oF
or

oF
or

� �T
D: ð3:2Þ
Here, Dep, D and Dp are the matrices in plasticity constitutive theory. The notation in this paper is consist-
ent with the monograph by Zienkiewicz and Taylor (1991). The real number M is defined as
M � Aþ oF
or

� �T
D
oF
or

ð3:3Þ
and the real number A as
A � � oF
owp

rT
oF
or

: ð3:4Þ
For hardening materials, the real number A > 0, for ideal plastic materials A = 0, and for softening mate-
rials A < 0. But in the case of softening, A must satisfy
jAj < oF
or

� �T
D
oF
or

; A < 0: ð4Þ
In fact, if jAj ¼ ðoF
or
ÞTD oF

or
and A < 0, then M = 0. This makes Dep indeterminant.

If jAj < ðoF
or
ÞTD oF

or
and A < 0, then M < 0. Hence, Dep can be written as
Dep ¼ Dþ 1

jM j dF d
T
F with dF ¼ oF

or
:

Since
dr ¼ Dþ 1

jM j dF d
T
F

� �
de ð5Þ
pre-multiplying Eq. (5) with (de)T(50) leads to
ðdeÞTdr ¼ ðdeÞTDde þ 1

jM j ½ðdeÞ
T
dF 
2:
Then (de)Tdr > 0 can be derived from the fact that D is positive definite, but this contradicts the definition
of softening. Therefore, for any softening material, a constitutive relationship can be determined only if its
softening rate satisfies inequality (4).
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Taking the Drucker–Prager�s material with isotopic hardening as an example, the equation for the yield
surface is given by
F ðr;wpÞ ¼ aI1 þ
ffiffiffiffiffi
J 2

p
� j ¼ 0 ð6Þ
in which a = a(wp), j = j(wp). Let a0 ¼ da
dwp
, j0 ¼ dj

dwp
, we have
oF
or

� �T
D
oF
or

¼ 9a2K þ G
where
K ¼ E
3ð1� 2mÞ ; G ¼ E

2ð1þ mÞ

and
A ¼ � oF
owp

rT
oF

or
¼ jðj0 � a0I1Þ
j 0 � a 0I1 > 0 means hardening and j 0 � a 0I1 = 0 means perfect plasticity, while j 0 � a 0I1<0 represents sof-
tening, but the limit to the softening rate is
jjðj0 � a0I1Þj < 9a2K þ G: ð7Þ

If the variation of a to wp is ignored, i.e., a 0 = 0, we have
dj2

dwp

����
���� < 18a2K þ 2G: ð7:1Þ
For a Drucker–Prager�s material, if its rate of strain softening satisfies Eq. (7) or (7.1), the material can be
considered to be a continuous strain softening material. Otherwise, we should neglect the softening process
and regard the material as a brittle-plastic material.
It should be noted that it is rather prone to be in danger in practice to regard brittle-plastic materials as

continuous strain-softening materials.
4. Stress changes in a brittle-plastic rock

Suppose that F(r) = 0 and f(r) = 0 represent PSS and RSS, respectively and a point is loaded from an
initial elastic state to the point A on PSS, as shown in Fig. 5. If the loading condition is satisfied,
L ¼ oF
or

� �T
Dde > 0; ð8Þ
there will be an abrupt drop in stresses from the point A to the point B on RSS. There are at least three
procedures for determining point B in the stress space in available finite element procedures, as shown
in Fig. 6. In this figure, B1 is determined based on the assumption that the center of the circle after dropping
is kept invariant. B2 is determined based on the assumption that the distance of dropping in the stress space
would be shortest. B3 is determined based on the assumption that the confining pressure r1 after dropping is
kept invariant. Among these procedures the first method seems to be the most popular one. Wan et al.
(1992) also proposed a procedure based on normal projection from B on RSS. Obviously, solutions from
different methods lead to different results. In the following, we will present another method for determining
the point B based on the plastic potential theory.
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Because of the brittleness of rock, the yield surface has a discontinuous change in the stress space, cor-
respondingly, finite increments of plastic strains Depij will be generated. Moreover, since brittle-plastic rock
satisfies Il�yushin�s postulate, we can therefore consider that the direction of the plastic strain increment
vector at dropping will still accord with the plastic potential theory. For the sake of simplicity, we use
the associated flow rule in the following. As a matter of fact, there is no essential difficult in applying
the non-associated flow. In this case, we have
Depij ¼ Dk
oF
orij

����
A

; ð9Þ
where Dk is the plastic flow factor. Since
Deij ¼ Deeij þ Depij: ð10Þ
Based on the triaxial testing of brittle materials of the standard model shown in Fig. 2, the change in the
axial strain Dez = 0. Thus, the changes in the circumferential and the radical strain Deh = Der = �mDez = 0.
Because the principle strain e1, e2 and e3 are equal to ez, er and eh, respectively, it can be considered that
Deij = 0 during the process of stress dropping from PSS to RSS in general cases. Therefore, we have
Deeij ¼ �Depij: ð11Þ
Using
Drij ¼ DijklDee ð12Þ
kl
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and substituting (9) and (11) into (12) leads to
Drij ¼ rBij � rAij ¼ �DkDijkl
oF
orkl

����
A

¼ �DksAij : ð13Þ
Therefore
rBij ¼ rAij � DksAij ; ð14Þ
where
sAij ¼ Dijkl
oF
orkl

����
A

: ð15Þ
As for Dk, considering the stress rBij after dropping is on PSS, i.e.,
f ðrBijÞ ¼ f ðrAij � DksAij Þ ¼ 0: ð16Þ
The numerical solution to Eq. (16) is trivial for any yielding surface. In the following, we will take Drucker–
Prager�s criterion for rock and Mohr–Coulomb�s criterion for rock joints as examples and provide the
procedures for determining Dk.
Equations of PSS and RSS of rock with Drucker–Prager�s form are, respectively,
F ðrÞ ¼ a0I1 þ
ffiffiffiffiffi
J 2

p
� j0 ¼ 0; ð17:1Þ

f ðrÞ ¼ arI1 þ
ffiffiffiffiffi
J 2

p
� jr ¼ 0; ð17:2Þ
where a0, j0 and ar, jr represent strength parameters of PSS and RSS, respectively. From Eq. (16), we can
derive that Dk is one of two roots of the following quadratic equation with one unknown quantity:
ak2 þ bk þ c ¼ 0 ð18:1Þ

in which
a ¼ ½arI1ðsAÞ � jr
2 � J 2ðsAÞ ¼ ð9a0arKÞ2 � G2 < 0; c ¼ ½arI1ðrAÞ � jr
2 � J 2ðrAÞ;
b ¼ sAtA � 2arI1ðsAÞ½arI1ðrAÞ � jr
 ¼ 2G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2ðrAÞ

p
� 18a0arK½arI1ðrAÞ � jr
;
where sA and tA are the deviatoric tensors of rA and sA, respectively. Because the discriminant of Eq. (18.1)
b2 � 4ac ¼ ½18a0arK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2ðrAÞ

p
� 2GðarI1ðrAÞ � jrÞ
2 > 0:
Eq. (18.1) must have two different roots:
k1 ¼ f ðrAÞ=ð9a0arK þ GÞ > 0;
k2 ¼ ðarI1ðrAÞ � jr �

ffiffiffiffiffi
J 2

p
Þ=ð9a0arK � GÞ
Obviously, Dk can be taken from
Dk ¼
minðk1; k2Þ if k2 > 0;

k1 if k2 6 0:

�
ð18:2Þ
Now, we can write respectively equations for PSS and RSS of the joint using Mohr–Coulomb�s criterion as
F ðrÞ ¼ ðs2s1 þ s2s2Þ
1=2 þ m0rn � c0 ¼ 0 ð19:1Þ
and
f ðrÞ ¼ ðs2s1 þ s2s2Þ
1=2 þ mrrn � cr ¼ 0; ð19:2Þ



H. Zheng et al. / International Journal of Solids and Structures 42 (2005) 139–158 147
where (ss1,ss2) are shear stress components perpendicular to each other on the joint surface, c0, m0(=tg/0)
and cr, mr(=tg/r) are strength parameters of PSS and RSS, respectively.
In general, the deformation in a rock joint might not be brittle but softening gradually. However, as sta-

ted in the preceding section, when the softening rate of strain of the joint is relatively large, we should ne-
glect the softening process and regard it as a brittle process. In this case, Dk can be determined by means of
the similar procedure
Dk ¼ f ðrAÞ=ðks þ m0mrknÞ; ð20Þ
where ks, kn are the shear stiffness and the normal stiffness of the joint, respectively.
5. Stability criteria for brittle-plastic deformation

The stability of structures in brittle-plasticity rock is of significant engineering interest. Dems and Mroz
(1985) provided a solution based on the sensitivity formulation, Liu and Xu (1989) put forward a formu-
lation of the disturbed and damaged surface. These formulations were all used for obtaining solutions for
relatively simple structures based on the maximum tensile stress criterion.
Taking into account the characteristics of a brittle-plastic body, we will now present the differential for-

mulation of the stability of the body, which is based on damage zone expansion.
Let the region of rock in study be denoted by X. Suppose that the traction Ti(x,t) on Sr and the body

force bi(x,t) in X are increased in the same proportion during the loading process, i.e., there exist the fol-
lowing decompositions:
T iðx; tÞ ¼ wðtÞT i0ðxÞ; x 2 Sr;

biðx; tÞ ¼ wðtÞbi0ðxÞ; x 2 X;
ð21Þ
where Ti0(x) and bi0(x) are known distribution functions of the traction and body force, respectively. w(t) is
the load multiplier, a monotonically increasing function, in which t is only a measuring parameter of the
loading process and is not related to any real time.
When w(t) is equal to we, the load multiplier of the elastic limit, the structure starts to have brittle dam-

age. Suppose that Xd and Xc represents the damaged zone and the intact zone, respectively, corresponding
to the load multiplier w(t)(Pwe). Write the maximum external diameter of Xd as l(t):
lðtÞ ¼Maxx;y2Xdkx� yk: ð22Þ

Obviously, for given distributions of loads Ti0(x) and bi0(x) during the stage of stable deformation, there is
a one-to-one correspondence between l and w:
lðtÞ ¼ LðwðtÞÞ; ðwðtÞ P weÞ ð23:1Þ

or
wðtÞ ¼ WðlðtÞÞ; ðlðtÞ P 0Þ: ð23:2Þ

Here, L(Æ) and W(Æ) are two known functions. When w(t) is equal to or exceeds wb, the multiplier of the limit
load, even if w(t) does not change, the damaged zone Xd would continue to expand. Therefore, we can con-
sider the stability criterion as
dw
dl

> 0 stable state;

¼ 0 critical state;
< 0 unstable state:

8><
>: ð24Þ
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We denote by Cd the interface surface between the damaged zone Xd and the intact zone Xc. C
c
d is the side of

Cd belonging to Xc. In general, the condition on Ccd, F(r(x)) = 0, x 2 Ccd, can be used to form (23.1) or
(23.2).
In principle, the above stability criterion applies only to simple structures under action of proportional

loads. For general structures under action of complex load types, the critical loads are determined through
iteration of the finite element analysis. This process has been stated in detail in many monographs on the
non-linear finite element methods.
6. Numerical examples

6.1. Example 1. Expansion of a thick-walled cylinder

Consider a brittle-plastic thick-walled cylinder subjected to an internal pressure p with the internal and
external radius a and b, respectively. For simplicity, the material is assumed to obey the Tresca�s criterion.
Applying such a simple criterion can still demonstrate some essentials of brittle-plastic deformation from
the following discussion. The peak and residual tensile strength are given by r0b and rb, respectively. We
will restrict our discussions to the stress solution.

6.1.1. Elastic solution

When p is smaller, we have the elastic solution (i.e. Lame�s solution, Ajit and Sarva, 1991)
rh ¼
pa2

b2 � a2
1þ b

2

r2

� �
; rr ¼

pa2

b2 � a2
1� b

2

r2

� �
: ð25Þ
Substituting the above equations into the equation of PSS
F ðrÞ ¼ rh � rr � r0b ¼ 0

and taking r = a, we have the elastic limit load
pe ¼
1

2
1� a

2

b2

� �
r0b: ð26Þ
6.1.2. Brittle-plastic solution

If p P pe, an enlarging plastic zone spreads outwards from the inner surface. Write the radius of the plas-
tic zone as c. In the plastic zone, rh and rr should satisfy the following equations:
drr
dr �

rh � rr
r

¼ 0
rh � rr � rb ¼ 0
rrjr¼a ¼ �p

8>><
>>: a 6 r 6 c: ð27Þ
Solving the above problem, we have
rh ¼ rb 1þ ln
r
a

� 

� p; rr ¼ rb ln

r
a
� p ða 6 r 6 cÞ: ð28Þ
We may now use Lame�s solution (25) to obtain stresses in the elastic zone
rh ¼
pcc

2

b2 � c2
1þ b

2

r2

� �
; rr ¼

pcc
2

b2 � c2
1� b

2

r2

� �
ðc 6 r 6 bÞ; ð29Þ
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where �pc is the value of rr in Eq. (28) at r = c (i.e., Cd)
pc ¼ �rjr¼c�0 ¼ p � rb ln
c
a
: ð30Þ
6.1.3. Limit load

Obviously, on the surface Ccd (i.e., r = c + 0), the peak strength criterion should be satisfied:
F ðrÞ ¼ ðrh � rrÞjr¼cþ0 � r0b ¼ 0:
Substituting Eq. (29) and (30) into the above equation leads to a relationship between p and c:
p ¼ rb ln
c
a
þ 1
2
1� c2

b2

� �
r0b: ð31Þ
From the differential formulation (24) on stability, we can know that in the critical state
dp
dc

¼ rb
c
� r0b
b2
c ¼ 0:
Hence, the limit radius of the plastic zone can be obtained:
cb ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffi
rb=r0b

q
: ð32Þ
Now, what the brittle-plastic deformation is different from the ideal elasto-plastic deformation is that under
the condition of the ideal elasto-plastic deformation, as long as any elastic zone exists, the structure will be
able to resist further expansion of the plastic zone. However, for brittle-plastic structures, such as in this
example, when expansion of the plastic zone reaches a certain amount, even though some elastic zones still
exist, the structure would collapse.
Moreover, an interesting phenomenon can be observed from the example. For a brittle-plastic thick-

walled cylinder of a given external diameter b, cb is a characteristic size of the cylinder. If the inner radius
a P cb, that means the cylinder is thinner, once p increases to the elastic load pe, the cylinder would collapse
before the damaged zone emerges. If a < cb, the critical load pb can be obtained by substituting cb into Eq.
(31). Therefore
pb ¼
pe if a P cb;
1
2
ðr0b � rbÞ þ rb ln ba

ffiffiffiffiffiffiffiffiffiffiffiffi
rb=r0b

p
if a < cb:

(
ð33Þ
It can be proved easily that
ps < pb < p0s if a < cb; ð34Þ

where ps (or p0s ) is the plastic limit load when regarding the cylinder as an ideal elastio-plastic material with
the limit tensile strength rb (or r0b) (Chen and Han, 1988)
ps ¼ rb ln
b
a

and p0s ¼ r0b ln
b
a
: ð35Þ
In fact, considering if x > 0 then 1 + lnx < x, we have
pb ¼
1

2
r0b � rb 1þ ln r0b

rb

� �� �
þ rb ln

b
a
>
1

2
r0b � rb

r0b
rb

� �
þ rb ln

b
a
¼ ps:
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As for the right of inequality (34), we still have
pb <
1

2
ðr0b � rbÞ þ r0b ln

b
a

ffiffiffiffiffiffiffiffiffiffiffiffi
rb=r0b

q
¼ 1
2

r0b 1þ ln rb
r0b

� �
� rb

� �

þ r0b ln
b
a
<
1

2
r0b

rb
r0b

� rb

� �
þ r0b ln

b
a
¼ p0b
Let rb ! r0b, the above result tends to the solution of an ideal elasto-plastic problem.

6.2. Example 2. A circular tunnel in deep depth

Suppose that a circular tunnel of the radius a is subjected to the supporting force p and the uniform con-
fining pressure q. The rock is homogeneous and brittle-plastic Mohr–Coulomb material. C0, u0 and C, u
represent the peak strength parameters and the residual parameters, respectively. The volume force is
neglected. Considering the supporting force p is much less than the confining pressure q, we regard that
the plastic deformation surrounding the tunnel is caused by q.

6.2.1. Elastic solution

When q is relatively small, the elastic solution of the problem was given by Ajit and Sarva (1991):
rr ¼ �q� ðp � qÞ a
2

r2
; rh ¼ �qþ ðp � qÞ a

2

r2
: ð36Þ
Because of rh < rr, PSS takes the form
F ðrÞ ¼ n0rr � rh � r0c ¼ 0 ð37Þ
in which
n0 ¼
1þ sinu0
1� sinu0

; r0c ¼
2C0

1� sinu0
: ð37:1Þ
Substituting (36) into (37) and considering q � p, we have the elastic limit confining pressure
qe ¼
1

2
½r0c þ ðn0 þ 1Þp
: ð38Þ
6.2.2. Brittle-plastic solution

If q P qe, the plastic zone will expand progressively from the tunnel�s surface with the increasing q. In the
plastic zone, rr and rh is the solution of the boundary value problem
drr
dr �

rh � rr
r

¼ 0

f ðrÞ ¼ nrr � rh � rc
rrjr¼a ¼ �p

8>><
>>: ða 6 r < bÞ: ð39Þ
Here, b is the radius of the plastic zone
n ¼ 1þ sinu
1� sinu

; rc ¼
2C cosu
1� sinu

: ð39:1Þ
From (39), we have
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rr ¼
rc
n� 1� p þ rc

n� 1

� 
 r
a

� 
n�1
rh ¼

rc
n� 1� n p þ rc

n� 1
� 
 r

a

� 
n�1
8><
>: ða 6 r 6 bÞ: ð40Þ
It can be seen that stresses in the plastic zone do not depend on the magnitude of the confining pressure q.
Applying Eq. (36), we can write out the stress in the elastic zone
rr ¼ �q� ðpb � qÞ
b2

r2

rh ¼ �qþ ðpb � qÞ
b2

r2

8>><
>>: ðr P bÞ: ð41Þ
Here, �pb is the value of rr in Eq. (40) at r = b, i.e., Cd
pb ¼ �rrjr¼b�0 ¼ p þ rc
n� 1

� 
 b
a

� �1�ð1=nÞ

� rc
n� 1 : ð42Þ
Considering that the peak strength criterion should be satisfied on the interface Ccd, r = b + 0
F ðrÞ ¼ ðn0rr � rhÞjr¼bþ0 � r0c ¼ 0 ð43Þ
substituting (41) and (42) into Eq. (43), the radius of the plastic zone can be obtained:
b ¼ a
ðn0 þ 1Þrc þ ðn� 1Þð2q� r0cÞ

ðn0 þ 1Þ½ðn� 1Þp þ rc


� �1=ðn�1Þ
: ð44Þ
Because of dq
db > 0, according to Eq. (24), the circular tunnel is always stable for any confining pressure.

6.3. Example 3. An example of engineering application––a large rock excavation for the Three Gorges Project

When completed in 2008, the Three Gorges Project (TGP) will feature the largest power generating sta-
tion of the world, with an installed generating capacity of 18,000 MW. Its other main function is flood con-
trol for the middle and lower reaches of the Yangzte River in Central China. Numerous disastrous floods
have occurred along these parts of the Yangzte River Basin in history, often involving thousands of casu-
alties and rendering millions of people homeless.
Since the Yangtze River is a major waterway for Central China, it is important to maintain the naviga-

tion capacity of the river after the TGP is completed. Fig. 7 shows the layout of the navigation facilities for
the project, consisting of a permanent shiplock, a shiplift and a temporary shiplock, all located on the
North shore of the Yangzte River at the dam site. The permanent shiplock is designed as a two-way,
five-step flight system, with each navigation chamber dimensioned at 280 · 34 · 5 m (length · width · min-
imum water depth). The shiplift is designed as a vertical hoisting type with a ship container sized at
120 · 18 · 3.5 m. The temporary shiplock is schemed for use during the construction period with an effec-
tive chamber size of 240 · 24 · 4 m.
The navigation facilities are constructed by deep excavation into the bedrock and the maximum excava-

tion depths are 173.5, 140 and 86 m for the permanent shiplock, the shiplift and the temporary shiplock,
respectively. The dominant rock type is plagioclase granite, which is divided into four zones according
to the degree of weathering, viz., completely weathered (IV), highly weathered (III), moderately weathered
(II), slightly weathered and fresh (I). Benches are left during excavation and are usually 15 m high and 5 m
wide with a slope of 1 (vertical) to 1 (horizontal) for the completely and highly weathered zones, 1–0.5 for
the moderately weathered zones, and 1–0.3 or vertical for the slightly weathered and fresh zones. The



Fig. 7. The layout of the navigation facilities for the TGP.

Fig. 8. Rock distribution of a typical section in the temporary shiplock slope.
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upright slopes are designed as walls of the navigation chambers for both the shiplocks and the shiplift. For
the permanent shiplock, the height of the upright slope is 50–70 m, for the temporary shiplock 29 m, and
for the shiplift 34–51 m (see cross-section in Fig. 8). A central rock barrier (or separation block) 55–57 m
wide and 50–70 m high is kept between the two channels of the permanent shiplock. Another central rock
barrier measuring 16–34 m wide and 23–26 m high is also left between the temporary shiplock and the ship-
lift chamber.
Such gigantic rock barriers and vertical walls are rare in the history of hydro-power construction. The

potential impact of rock deformation on the performance of the navigation facilities was duly recognized in



H. Zheng et al. / International Journal of Solids and Structures 42 (2005) 139–158 153
the early project planning phase. Frequently asked questions pertained to the stability of the vertical walls
and the rock barriers after excavation. If they were safe and stable at the time of excavation, would their
long-term deformation affect the normal operation of the shiplocks and the shiplift? If they were unstable,
should the rock barriers be excavated and replaced by reinforced concrete barriers or kept in place but rein-
forced to maintain their safety? If reinforcement were feasible, what would be the optimum design and
parameters, and son on? To answer these questions, many studies were conducted during the design stage.
Most of the questions were satisfactorily answered. However, two conflicting opinions existed regarding the
deformation. Some researchers believed that the deformation would be just several centimeters, the same
magnitude as that calculated by the elastic finite element analysis, and hence the rock barrier could be stable
under some measures of reinforcement, but other researchers insisted that the deformation could be much
larger than the calculated value and the rock barrier could be unstable because the barriers might be nearly
completely damaged.
The key to answer the above questions lies in understanding the change in rock mass properties due to

excavation disturbance and in evaluating the mechanical properties of the disturbed zones. Comprehensive
investigations were hence conducted to determine the actual disturbed extent and the mechanical proper-
ties, and a finite element analysis of the rock deformation adjacent to the navigation facilities was carried
out by the authors, in collaboration with the Yangzte River Resources Commission (the designer), under
contract from the China Three Gorges Project Development Corporation (the owner).
The finite element model used for the analysis is shown in Fig. 9, with the axis x being in direction to the

downstream and the axis z to the upward vertical. Altogether there are 11,238 nodes and 10,066 block and
joint elements in the model. The parameters given by the designer for intact rock and joints are listed
respectively in Tables 1 and 2, for the various zones of rock depicted in Fig. 8, along with the loading
and in situ conditions. The rocks are considered to satisfy Drucker–Prager�s criterion. Two parameters a
and j in Drucker–Prager�s criterion are determined through letting Drucker–Prager�s criterion coincide
with Mohr–Coulomb�s criterion in the condition of the plane strain (Wang et al., 1982)
x 

y 

z 

6 602  8 0 

Fig. 9. Finite element model of the temporary shiplock after excavation.



Table 1
Mechanical parameters of rocks

RC DW d (kN/m3) E (GPa) m rb (MPa) C0 (MPa) f0 Cr (MPa) fr

Plagioclase granite SWF 27.0 40.0 0.22 1.5 1.8 1.8 0.7 1.3
MW 26.8 15.0 0.24 1.0 1.0 1.3 0.35 1.1
CHW 26.5 1.0 0.30 0.0 0.1 0.7 0.07 0.7

Note: RC = rock category, DW = degree of weathering; SWF = slightly weathered and fresh; MW = moderately weathered;
CHW = completely and highly weathered.

Table 2
Mechanical parameters of structural planes

Category ks (MPa/m) kn (MPa/m) C0 (MPa) f0 Cr (MPa) fr

Hard and thin infillings 3000 7500 0.20 0.70 0.10 0.6
Soft structural planes SWF, MW 1000 2500 0.18 0.60 0.12 0.5

CHW 1000 2500 0.12 0.40 0.07 0.35
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a ¼ tg/

ð9þ 12tg2/Þ1=2
; j ¼ 3C

ð9þ 12tg2/Þ1=2
: ð45Þ
If C and / are taken as the peak strength parameters C0 and /0 = (tg
�1f0) in Table 1, respectively, the peak

strength surface of Drucker–Prager�s criterion can be obtained. For rock joints, we apply Mohr–Coulomb�s
criterion.
According to the in situ measurement carried out by the designer, the initial geostress field in the slight

weathered and fresh rock is characterized by the horizontal stresses being greater than the vertical stress
that is approximate to the stress due to the self-weight of rock mass. In computation, the geostress field
was hence represented through loading the self-weight in the vertical direction and the following distribu-
tion on the boundary of X = Xmin:
rx ¼ 4:3982b þ 0:01168H ðMPaÞ;
sxy ¼ szx ¼ 0

�
ð46Þ
and Y = Ymax
ry ¼ 4:6867b þ 0:01168H ðMPaÞ;
sxy ¼ syz ¼ 0;

�
ð47Þ
respectively, in which H represents the depth and b is the reduction factor defined as the ratio of the Young
modulus of a rock in the model to the Young modulus of the slightly weathered and fresh rock. The bound-
aries of X = Xmax,Y = Ymin and Z = Zmin are constrained in the normal and free in the tangential.
Staged excavation was simulated in the computation, with all relevant boundaries being constrained in

the normal. For each excavation, convergence can be arrived with finite iterations. That means that the en-
tire rock mass in the region would be stable during excavation.
Fig. 10 shows the disturbed zone computed for the rock barrier between the shiplift chamber and the

temporary shiplock chamber (see cross-section 3–3 in Fig. 10, and the layout in Fig. 7), for the three cases
of elastic analysis (E), elasto-plastic analysis (EP) and elasto-brittle-plastic analysis (EBP), respectively. The
disturbed zone is defined as a stress-relieved, weakened zone produced by the excavation process,
corresponding to the zone of tension and shear damage (Deng et al., 2001). The field measured disturbed
zone is also shown in Fig. 10, for comparison purposes, which was determined in the field jointly by the



Fig. 10. Damaged zones in the rock barrier.

North

Fig. 11. Deformation of a section after excavation.
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cross-hole seismic wave penetration testing and borehole elastic modulus testing (Deng et al., 2001). The
results of the brittle-plastic analysis appear to be closest to the field observation, among the results of
the three analyses.
Fig. 11 illustrates the deformation of a section after excavation based on the assumption of brittle-plas-

ticity. The rock barrier obviously inclines towards the North. Table 3 lists the deformation of some typical
points on the section shown in the Fig. 12 from three constitutive models. The differences of those points far
from the rock barrier and the upright walls are small, but the differences of those points––3, 6, 7 and 10, on
the tops of the barrier and the upright walls are obvious. The deformations are in the magnitude of cen-
timeter even if the rock mass is regarded as being in the worst case. The displacement measurements in situ
has verified these judgments.



Table 3
Deformation of some typical points on the section shown in Fig. 12 (unit: cm)

Points E EP EBP

Hora Ver Totb Hor Ver Tot Hor Ver Tot

1 1.45 0.65 1.59 1.46 0.65 1.60 1.47 0.65 1.61
2 1.82 0.47 1.88 1.83 0.47 1.89 1.81 0.50 1.87
3 2.05 �0.04 2.05 2.08 0.04 2.08 2.23 0.26 2.24
4 0.66 0.16 0.68 0.65 0.15 0.66 0.65 0.13 0.66
5 �0.58 0.60 0.83 �0.59 0.58 0.83 �0.60 0.57 0.83
6 �1.37 0.63 1.51 �1.43 0.65 1.58 �1.53 0.84 1.74
7 �0.59 0.80 1.00 �0.55 0.82 0.99 �0.37 0.89 0.97
8 �0.65 0.79 1.02 �0.67 0.77 1.03 �0.69 0.80 1.06
9 �1.04 0.62 1.21 �1.05 0.61 1.21 �1.06 0.63 1.23
10 �1.90 0.46 1.95 �1.91 0.46 1.97 �1.99 0.54 2.06
11 �1.93 1.14 2.24 �1.94 1.13 2.25 �1.94 1.15 2.25

a The deformation towards the South is positive (see in Fig. 11).
b Tot = (Hor2 + Ver2)1/2.
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6 7

8 9

10

11

North 

Fig. 12. Some typical points on a section in the model.
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Although procedures based on phenomenological models including this study might not simulate strain
localization and crack development in rock mass, damaged zones, the degree of damage, the deformation of
rock mass, the global stability and many other useful data can be evaluated rather rationally. Zheng et al.
(2004) investigated the development of cracks in the rock barrier and the stability.
7. Conclusions

This paper proves that, within the framework of the classical theory of plasticity, there is a limit to the
rate of softening of a strain-softening material. A procedure for analyzing the abrupt change from the peak
strength surface to the residual strength surface is developed, based on the Il�yushin�s postulate and the
plastic potential theory. The criterion of stability is formulated, which can be used to evaluate the ultimate
load of a brittle-plastic body acted by the given load distribution. The analytical and numerical procedure
thus developed has been validated with two simple examples, and the engineering application case of a steep
rock slope adjacent to the shiplock for the Three Gorges project in China.
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Although procedures based on phenomenological models including this study might not simulate some
details such as strain localization and crack development in rock mass, damaged zones, the degree of dam-
age, the deformation of rock mass, the global stability and many other useful data can be qualified quite
well.
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Martin, C.D., Chandler, N.A., 1994. The progressive failure of Lac du Bonnet granite. International Journal of Rock Mechanics and
Mining Sciences 31, 643–659.

Mastilovic, S., Krajcinovic, D., 1999. Statistical models of brittle deformation: Part II. Computer simulations. International Journal of
Plasticity 15 (4), 427–456.



158 H. Zheng et al. / International Journal of Solids and Structures 42 (2005) 139–158
Muhlhaus, H.B., Vardoulakis, I., 1987. The thickness of shear bands in granular materials. Géotechnique 37, 271–283.
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