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Abstract

Based upon II’yushin’s postulate and the plastic potential theory, a procedure for calculating the abrupt change in
stresses from the peak strength surface to the residual strength surface is proposed. The stability criterion for a brittle-
plastic body loaded proportionally is presented. Finally, three examples have been solved analytically and numerically,
including an engineering example of the steep rock slope of a shiplock system for the Three Gorges hydroelectric power
project in China.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The advent of the “stiff”’ testing machines with advanced control systems has made possible the study of
the stress—strain behavior of brittle-plastic hard rocks. Great progresses have been made in the study of the
brittle rocks in the last two decades. However, up to now, there has been no mechanical model that is capa-
ble of describing all aspects of deformation of brittle rocks.

So far, several mechanical models that can be adopted to simulate the deformation of brittle rocks have
distinct concerns. For example, the main advantage of the micromechanical models (see Wong, 1982;
Fredrich and Wong, 1986; Fredrich et al., 1989; Kemeny and Cook, 1991) is the ability to describe
the microstructural microcrack kinetics and to reproduce some macroscopic behaviors of brittle rock
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specimens in test. A quite complete review on micromechanics was given by Kemeny and Cook (1991). If
the process of the strain localization is emphasized, several conceptually different approaches for modeling
of localized deformation are available, including the use of the Cosserat continuum (de Borst, 1991; Muhl-
haus and Vardoulakis, 1987), the non-local theory (Pijaudier-Cabot and Bazant, 1987), gradient-dependent
formulations (de Borst and Muhlhaus, 1992, 1993; Roy et al., 2003), strong discontinuity approaches (Reg-
ueiro and Borja, 2000; Wells and Sluys, 2001, etc.). Bardet (1990), Pietruszczak and Xu (1995), present
quite comprehensive reviews for two development phases till 1990 and 1995, respectively. In addition,
the statistical method (Krajcinovic and Mastilovic, 1999; Mastilovic and Krajcinovic, 1999, etc.) seems
to be a promising way to describe the deformation of the brittle rock.

On the other hand, if main concerns focus on the failure zone’s distribution and the degree of deforma-
tion in practice, some simpler approaches based on the classical continuum theory, such as Zhang and
Subhash (2001), Hajiabdolmajida et al. (2002), Lo and Lee (1973), as well as continuous damage models
(e.g., Krajcinovic and Vujosevic, 1998; Ju, 1989; Etienne et al., 1998; Chiarelli et al., 2003), are also prac-
tical. Though there might exist mesh dependency in some aspects to a certain extent using these approaches,
estimation of the failure zone’s distribution and the degree of failure are quite accurate. In many situations,
the failure zone’s distribution and the degree of failure, for example, the excavation disturbed zones (EDZ),
are sufficient to decide the lengths of anchors and/or bolts to be designed to reinforce the failure zones.
Therefore, these approaches based on the classical continuum theory have still been adopted in engineering
computations.

The failure mechanism of brittle rocks is stated in Wawersik and Brace (1971), Steif (1984), Sammis and
Ashby (1986), Martin and Chandler (1994) and Atkinson (1984), and Litewka and Debinski (2003). Based
upon the phenomenological description, it is generally recognized that a salient feature of a brittle-plastic
material is that it displays an abrupt post-peak drop in stress on the stress—strain (6—¢). In other words,
when a point in a stress space is loaded from its initial elastic state to the peak strength surface (PSS), stress
will drop abruptly to the residual strength surface (RSS). It is this discontinuous change of the yield surface
in the stress space that causes difficulties in an analysis. The determination of this abrupt drop in stress from
PSS to RSS has been a key issue in the finite element analysis of a brittle-plastic rock mass. To date, a num-
ber of computational procedures have been proposed, involving different assumptions and hence leading to
different results.

In this paper, a procedure based on the generalization of the classical theory of plasticity for determining
the abrupt change in stresses for a brittle-plastic material is proposed. The proposed method does not
require any parameters for describing the microcracks of the rock. Derived from the classical theory of
plasticity, the proposed concepts and methodology are more readily accepted by engineers, and it is also
convenient to implement in finite element analysis.

The abrupt changes in stress of a brittle material may result in unstable behavior for the majority of rock
structures. In this paper, a formulation on the stability of a brittle body loaded proportionally is presented.
Finally, the effectiveness of the proposed methods is examined using two simple examples where the ana-
lytical solutions are available. The proposed methods are also applied to analyze the steep rock slope of a
shiplock system of the Three Gorges hydroelectric project in China.

2. Brittle-plastic rock

In general, there are two main types of post-peak o—¢ behavior of brittle rocks as shown in Fig. 1. If the
declining segment of curve no. I or no. II is very near to the perpendicular line AB under certain range of
confining pressures, this type of rock can be regarded as a brittle-plastic rock to be studied in this paper. An
idealized model is shown in Fig. 2, in which & and € are, respectively, the equivalent stress and equivalent
strain corresponding to a certain yield criterion. Lo and Lee (1973) discussed this model in the stability
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Fig. 1. Two basic types of full process curves.

Q
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Fig. 2. Brittle-plastic model.

analysis of slopes. At present, this model has been applied in many cases, for example, Hajiabdolmajida
et al. (2002), Wang and Dussealt (1994). This model is described as follows. When a point in the rock is
loaded from its initial elastic state to its peak strength at point A, it will drop rapidly to the point B on
the residual strength line BC. After this, continuous loading will lead to a o—¢ relation that follows on line
BC and cause plastic deformation. Otherwise, unloading at some point on BC will result in some elastic
responses.

For unstable materials, II’'yushin has proposed a thermodynamic postulate (Chen and Han, 1988), which
is more extensive than Drucker’s postulate and is stated as follows: After any element in a body undergoes a
closed cycle of strain, the work done by stress in the closed cycle of strain is not negative. If a material sat-
isfies this postulate, a complete system of the elasto-plastic constitutive theory for the material can be
formulated.

For a system with one degree of freedom as shown in Fig. 3(a), obviously, any closed cycle of strain far
from point A would make the work done by stress not negative. Now taking a closed cycle of strain near
point A, the corresponding stress path is D — A — B — E — F. The magnitude of the work done by stress
along each segment is the area enclosed by the segment, the two perpendicular lines passing the two end
points of the segment and the ¢ axis. The sign of the work done is the same as de (assuming that stress is
positive here). Therefore the work done is positive along DA and BE, zero along AB, and negative along
EF. After a complete closed cycle of strain, the pure work done by stress is the area of the polygon DABEF
and its value is positive. Therefore, any brittle-plastic material can be included in II’'yushin’s postulate.
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Fig. 3. Work done by stress in one cycle of strain: (a) brittle-plastic material, (b) material of type II.

However, the situation is not true for rock of curve no. II characteristic, particularly when we take a
closed cycle of strain at point A as shown in Fig. 3(b). The corresponding stress path is A — B — E.
The magnitude of the work done by stress along this path is equal to the area of the triangle ABE, and
its value is negative. Therefore a rock with the characteristic of curve no. Il does not satisfy II’'yushin’s
postulate.

3. Limitation of classical theory of plasticity for softening material

In order to evade the indeterminacy of the stress-drop in brittle-plastic materials, some researchers
would consider brittle damage as a continuous strain-softening process as shown in Fig. 4. However this
approach does not agree with the deformation characteristics of brittle-plastic rocks, because for brittle-
plastic rocks the process from PSS to RSS is not gradual but abrupt, and any stress state during dropping
is also not recoverable. Obviously, the continuous strain-softening model cannot adequately describe these
phenomena of brittle-plastic rocks.

Fig. 4. The continuous strain softening model.
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Furthermore, even if the continuous strain-softening model is adopted, it is impossible to carry out the
computation by taking the real softening segment under the classical elasto-plasticity framework, because
the classical plasticity theory has a limitation to the rate of the strain softening. In the following, we will
point that the classical constitutive integration is of significance only if the rate of softening is relatively low.

Suppose the yield surface of rock is

F(a,wp) =0, (1)
where wy, is the plastic work, defined as
wp = / o' de,. 2)
For the case of plastic loading, the stress increments are given by (Zienkiewicz and Taylor, 1991)
do = D.,ds, (3.1)
Do-D-D, D,—p(% T1) (3.2)
e b’ P M 36 \do ' '

Here, D.,, D and D, are the matrices in plasticity constitutive theory. The notation in this paper is consist-
ent with the monograph by Zienkiewicz and Taylor (1991). The real number M is defined as

oF\" oF
M=A4 — | D— 33
Jr<60‘) Oo (3:3)
and the real number A4 as
OF LOF
=——0¢ —. 4
Gwpa Oc (34)

For hardening materials, the real number 4 > 0, for ideal plastic materials 4 = 0, and for softening mate-
rials 4 <0. But in the case of softening, 4 must satisfy

oF\" oF
A — | D—, A<O. 4
i< (5) Do A< @

In fact, if |4| = (£)"'DE and 4 <0, then M = 0. This makes D, indeterminant.
If |4] < (£)'DE and 4 <0, then M < 0. Hence, D, can be written as

1 T . oF
DCP_D+MdFdF with dp—a
Since
1
do = (D + MdFd;) de (5)

pre-multiplying Eq. (5) with (dg)"(#0) leads to
1
(de)"de = (de)" Dde + i [(de)"dy]’.

Then (dg)”de > 0 can be derived from the fact that D is positive definite, but this contradicts the definition
of softening. Therefore, for any softening material, a constitutive relationship can be determined only if its
softening rate satisfies inequality (4).
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Taking the Drucker—Prager’s material with isotopic hardening as an example, the equation for the yield
surface is given by

F(o,wy,) =al; +VJ, — k=0 (6)

in which o = o(w},), K = Kk(wp,). Let of = Jx 5/ = A«

dwp’ - m, we have

T
oF Da—F =9K +G
Oo Oo

where

k=—t - E
T31-2) T 2(1+v)

and

OF L OF

A=——6 —
awp” Oo

= (k' —d'I;)

k' — o[} > 0 means hardening and ' — «'l; = 0 means perfect plasticity, while k" — o'1;<0 represents sof-
tening, but the limit to the softening rate is

k(' — o'1,)| < 9°K + G. (7
If the variation of « to wy, is ignored, i.e., o' = 0, we have

d 2

S| < 182K + 26. (7.1)

dw,

For a Drucker—Prager’s material, if its rate of strain softening satisfies Eq. (7) or (7.1), the material can be
considered to be a continuous strain softening material. Otherwise, we should neglect the softening process
and regard the material as a brittle-plastic material.

It should be noted that it is rather prone to be in danger in practice to regard brittle-plastic materials as
continuous strain-softening materials.

4. Stress changes in a brittle-plastic rock

Suppose that F(g) =0 and f{6) = 0 represent PSS and RSS, respectively and a point is loaded from an
initial elastic state to the point A on PSS, as shown in Fig. 5. If the loading condition is satisfied,

oF\"

there will be an abrupt drop in stresses from the point A to the point B on RSS. There are at least three
procedures for determining point B in the stress space in available finite element procedures, as shown
in Fig. 6. In this figure, B; is determined based on the assumption that the center of the circle after dropping
is kept invariant. B, is determined based on the assumption that the distance of dropping in the stress space
would be shortest. B; is determined based on the assumption that the confining pressure o after dropping is
kept invariant. Among these procedures the first method seems to be the most popular one. Wan et al.
(1992) also proposed a procedure based on normal projection from B on RSS. Obviously, solutions from
different methods lead to different results. In the following, we will present another method for determining
the point B based on the plastic potential theory.
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A

Fig. 5. Diagram of stress-dropping.

[

Fig. 6. Three typical kinds of hypotheses on stress-dropping.

Because of the brittleness of rock, the yield surface has a discontinuous change in the stress space, cor-
respondingly, finite increments of plastic strains Aej; will be generated. Moreover, since brittle-plastic rock
satisfies II’'yushin’s postulate, we can therefore consider that the direction of the plastic strain increment
vector at dropping will still accord with the plastic potential theory. For the sake of simplicity, we use
the associated flow rule in the following. As a matter of fact, there is no essential difficult in applying
the non-associated flow. In this case, we have

F
Aeh = A e : )
g aGi]’ A
where A/ is the plastic flow factor. Since
Aeyj = A&l + Aey. (10)

Based on the triaxial testing of brittle materials of the standard model shown in Fig. 2, the change in the
axial strain Ae. = 0. Thus, the changes in the circumferential and the radical strain Agy = Ag, = —vAe. = 0.
Because the principle strain ¢, & and &3 are equal to e., ¢. and gy, respectively, it can be considered that

Ag; = 0 during the process of stress dropping from PSS to RSS in general cases. Therefore, we have
A&, = —Ag]. (11)

i

Using
AO'I'j = DijklAS]e(] (12)
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and substituting (9) and (11) into (12) leads to

oF ,

AGU = GB _ 0’ = —A/LDljk[aO_kl N = _A/L,Tg. (13)
Therefore

03 = 03 — A/I‘cé, (14)
where

oF
A= Di—o | . 15
’Ez_/ Jklao_k[ A ( )

As for A/, considering the stress og after dropping is on PSS, i.e.,
/(6%) = f (o} — Aiz}) =0 (16)

The numerical solution to Eq. (16) is trivial for any yielding surface. In the following, we will take Drucker—
Prager’s criterion for rock and Mohr-Coulomb’s criterion for rock joints as examples and provide the
procedures for determining AA.

Equations of PSS and RSS of rock with Drucker—Prager’s form are, respectively,

F(O‘):O(()]lﬁ*\/j;*Ko:O, (171)
fle) = a0y ++/Jy— K, =0, (17.2)

where o, ko and a,, K, represent strength parameters of PSS and RSS, respectively. From Eq. (16), we can
derive that Al is one of two roots of the following quadratic equation with one unknown quantity:

P4 bi4c=0 (18.1)
in which
a= o, () — 1.]" = Jo(z) = QoK) — G* < 0; ¢ = [ad1(6™) — k)" — Jo(6™);
b= = 2001 (T[] (6") — K] = 2G\/T2(6”) — 18000, K [o0.]1 (6™) — K,];
where s and #* are the deviatoric tensors of ¢ and *, respectively. Because the discriminant of Eq. (18.1)
b* — dac = [180o,K\/J5(6”) — 2G(0,1, (™) — K,)]* > 0.
Eq. (18.1) must have two different roots:
21 = f(6") /(9K + G) > 0,
Jo = (0,11(6*) — 1, — VT2) /(920K — G)
Obviously, A4 can be taken from

AJ— {min(il,/lz) lf /:Lz > 07
A if 1, <0.

Now, we can write respectively equations for PSS and RSS of the joint using Mohr-Coulomb’s criterion as

F(o) = (4 +15)"* + moo, —cy = 0 (19.1)

(18.2)

and

flo)= (2 +)" +ma, —c, =0, (19.2)
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where (14,74,) are shear stress components perpendicular to each other on the joint surface, ¢q, mo(=tg¢o)
and ¢,, m/(=tg¢,) are strength parameters of PSS and RSS, respectively.

In general, the deformation in a rock joint might not be brittle but softening gradually. However, as sta-
ted in the preceding section, when the softening rate of strain of the joint is relatively large, we should ne-
glect the softening process and regard it as a brittle process. In this case, A4 can be determined by means of
the similar procedure

A= f(6™)/ (kg + mom,ky), (20)

where kg, k, are the shear stiffness and the normal stiffness of the joint, respectively.

5. Stability criteria for brittle-plastic deformation

The stability of structures in brittle-plasticity rock is of significant engineering interest. Dems and Mroz
(1985) provided a solution based on the sensitivity formulation, Liu and Xu (1989) put forward a formu-
lation of the disturbed and damaged surface. These formulations were all used for obtaining solutions for
relatively simple structures based on the maximum tensile stress criterion.

Taking into account the characteristics of a brittle-plastic body, we will now present the differential for-
mulation of the stability of the body, which is based on damage zone expansion.

Let the region of rock in study be denoted by Q2. Suppose that the traction T(x,?) on S, and the body
force byx,t) in Q are increased in the same proportion during the loading process, i.e., there exist the fol-
lowing decompositions:

Ti(x,t) =Y (O)To(x), x€S,,

bi(x,t) = Y(t)bo(x), x€Q, (21)

where Tjo(x) and b,o(x) are known distribution functions of the traction and body force, respectively. ys(¢) is
the load multiplier, a monotonically increasing function, in which ¢ is only a measuring parameter of the
loading process and is not related to any real time.

When y(¢) is equal to ., the load multiplier of the elastic limit, the structure starts to have brittle dam-
age. Suppose that Q4 and Q. represents the damaged zone and the intact zone, respectively, corresponding
to the load multiplier y(¢)( =y.). Write the maximum external diameter of Q4 as /(7):

I(t) = Maxyeq, |l x =yl (22)

Obviously, for given distributions of loads T;y(x) and b;(x) during the stage of stable deformation, there is
a one-to-one correspondence between / and y:

1(t) = LY(0), (b(2) = ¥e) (23.1)
or
Y(o) =), () =0). (23.2)

Here, L(-) and ¥(-) are two known functions. When (¢) is equal to or exceeds s, the multiplier of the limit
load, even if y/(¢) does not change, the damaged zone Q4 would continue to expand. Therefore, we can con-
sider the stability criterion as

> 0 stable state,
= 0 critical state, (24)
< 0 unstable state.

dy
di
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We denote by I'q the interface surface between the damaged zone €4 and the intact zone .. I'§ is the side of
I'y belonging to Q.. In general, the condition on I'§, F(a(x)) =0, x € I', can be used to form (23.1) or
(23.2).

In principle, the above stability criterion applies only to simple structures under action of proportional
loads. For general structures under action of complex load types, the critical loads are determined through
iteration of the finite element analysis. This process has been stated in detail in many monographs on the
non-linear finite element methods.

6. Numerical examples
6.1. Example 1. Expansion of a thick-walled cylinder

Consider a brittle-plastic thick-walled cylinder subjected to an internal pressure p with the internal and
external radius a and b, respectively. For simplicity, the material is assumed to obey the Tresca’s criterion.
Applying such a simple criterion can still demonstrate some essentials of brittle-plastic deformation from
the following discussion. The peak and residual tensile strength are given by o) and g,, respectively. We
will restrict our discussions to the stress solution.

6.1.1. Elastic solution
When p is smaller, we have the elastic solution (i.e. Lame’s solution, Ajit and Sarva, 1991)

2 2 2 2
pa b pa b
O’(;:bz_a2<1—|-r2>7 O’r:bz_a2<l—r2). (25)

Substituting the above equations into the equation of PSS

F(6) =09 —0,—0a) =0
and taking r = a, we have the elastic limit load

1 a2
Pe = B) <1 - ?> 02~ (26)

6.1.2. Brittle-plastic solution
If p = p., an enlarging plastic zone spreads outwards from the inner surface. Write the radius of the plas-
tic zone as ¢. In the plastic zone, o4 and o, should satisfy the following equations:

ds, 00 — Or

Solving the above problem, we have
r r
— — ) — L= - — < < .
) ab(l + lna) p, 0, =0y lna p (a<r<e) (28)

We may now use Lame’s solution (25) to obtain stresses in the elastic zone

2 b2 2 b2
5y = L€ (1+ > o, = L€ <1> (c<r<b), (29)

b= r? b — 2
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where —p, is the value of ¢, in Eq. (28) at r = ¢ (i.e., I'g)

C
Pe = 76')':670 =P 0b lna (30)

6.1.3. Limit load
Obviously, on the surface I (i.e., r = ¢ + 0), the peak strength criterion should be satisfied:

F(o) = (69— GV)|r:c+0 - 62 =0.

Substituting Eq. (29) and (30) into the above equation leads to a relationship between p and c¢:
c 1 A\
p:ablna—&—E(l—?)Gb. (31)
From the differential formulation (24) on stability, we can know that in the critical state

dp o o)
L_% _%._y,
de ¢ €

Hence, the limit radius of the plastic zone can be obtained:
¢y = by/ay/dY. (32)

Now, what the brittle-plastic deformation is different from the ideal elasto-plastic deformation is that under
the condition of the ideal elasto-plastic deformation, as long as any elastic zone exists, the structure will be
able to resist further expansion of the plastic zone. However, for brittle-plastic structures, such as in this
example, when expansion of the plastic zone reaches a certain amount, even though some elastic zones still
exist, the structure would collapse.

Moreover, an interesting phenomenon can be observed from the example. For a brittle-plastic thick-
walled cylinder of a given external diameter b, ¢, is a characteristic size of the cylinder. If the inner radius
a = ¢p, that means the cylinder is thinner, once p increases to the elastic load p., the cylinder would collapse
before the damaged zone emerges. If a < ¢, the critical load p, can be obtained by substituting ¢, into Eq.
(31). Therefore

Pe if a = Cp,
Py = 169 — 6) + apInky/ o if (33)
5 (0, ) FopIn2y\/a,/a) if a <cy.

It can be proved easily that
po<py,<p’ ifa<cy, (34)

where p; (or p?) is the plastic limit load when regarding the cylinder as an ideal elastio-plastic material with
the limit tensile strength o, (or ¢9) (Chen and Han, 1988)

b b
po=0,In- and p’=dlIn-. (35)
a a
In fact, considering if x > 0 then 1 + Inx < x, we have

1 0'0 b 1 0'0 b
Py =5 [02 - ab<1 +ln6—2)} +0'b1n5 >3 <02 - UbO__Z) +0'blnE:ps'
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As for the right of inequality (34), we still have

1 b 1 o)
Ds <§(02 — gp) —|—ogln;\/ab/ag =3 [02(1 —|—1n?> — ab}

b

b 1 ap b
+aglna<§(aga—2—ab> +621n;:p2

Let 6, — o), the above result tends to the solution of an ideal elasto-plastic problem.

6.2. Example 2. A circular tunnel in deep depth

Suppose that a circular tunnel of the radius a is subjected to the supporting force p and the uniform con-
fining pressure ¢. The rock is homogeneous and brittle-plastic Mohr—Coulomb material. Cy, ¢y and C, ¢
represent the peak strength parameters and the residual parameters, respectively. The volume force is
neglected. Considering the supporting force p is much less than the confining pressure ¢, we regard that
the plastic deformation surrounding the tunnel is caused by g¢.

6.2.1. Elastic solution
When ¢ is relatively small, the elastic solution of the problem was given by Ajit and Sarva (1991):

6, =—q—(p—q)= ae:qur(p*q)f—z- (36)

r2’

Because of ¢4 < g,, PSS takes the form

F(6) =nyo, —ay—a =0 (37)
in which
po— LTS 0 2C0 (37.1)
1 — sin ¢, 1 — sin ¢,

Substituting (36) into (37) and considering ¢ > p, we have the elastic limit confining pressure

4o =3 160+ (m + 1)pl. (38)

6.2.2. Brittle-plastic solution
If ¢ = g., the plastic zone will expand progressively from the tunnel’s surface with the increasing ¢. In the
plastic zone, ¢, and oy is the solution of the boundary value problem

d(;r_al)_ar_o
dr r -

f(6) =na, — oy — o

O-Vlr':a = _p

(a <r<b). (39)

Here, b is the radius of the plastic zone

polEsme o 2Ccse. (39.1)
1 —sing 1 —sing

From (39), we have
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D0
g, — — =+ —
" on—1 p n—1/\a
Sl D0
ogp=———n(p+ -
n— P n—1/\a

It can be seen that stresses in the plastic zone do not depend on the magnitude of the confining pressure g.
Applying Eq. (36), we can write out the stress in the elastic zone

(a <r<b). (40)

b2
O-rzfq*(Pb*q)ﬁ
b2
0y = _q+(.pl7_q)r_2

Here, —p; is the value of ¢, in Eq. (40) at r =b, i.e., I['g

o b 1=(1/n) e
Py = =0, o= (P + ) (‘) 1 (42)

n—1/\a

Considering that the peak strength criterion should be satisfied on the interface Iy, r =5+ 0
F(o') = (nOO'r - 09)|r:b+0 - o(c) =0 (43)
substituting (41) and (42) into Eq. (43), the radius of the plastic zone can be obtained:

(g + 1o+ (n— 1)(2g — 0°) 1/(n—1)
b—a< (no+ D)[(n—1)p + o] ) .

(44)
Because of % > 0, according to Eq. (24), the circular tunnel is always stable for any confining pressure.
6.3. Example 3. An example of engineering application—a large rock excavation for the Three Gorges Project

When completed in 2008, the Three Gorges Project (TGP) will feature the largest power generating sta-
tion of the world, with an installed generating capacity of 18,000 MW. Its other main function is flood con-
trol for the middle and lower reaches of the Yangzte River in Central China. Numerous disastrous floods
have occurred along these parts of the Yangzte River Basin in history, often involving thousands of casu-
alties and rendering millions of people homeless.

Since the Yangtze River is a major waterway for Central China, it is important to maintain the naviga-
tion capacity of the river after the TGP is completed. Fig. 7 shows the layout of the navigation facilities for
the project, consisting of a permanent shiplock, a shiplift and a temporary shiplock, all located on the
North shore of the Yangzte River at the dam site. The permanent shiplock is designed as a two-way,
five-step flight system, with each navigation chamber dimensioned at 280 x 34 x 5 m (length x width X min-
imum water depth). The shiplift is designed as a vertical hoisting type with a ship container sized at
120 x 18 x 3.5 m. The temporary shiplock is schemed for use during the construction period with an effec-
tive chamber size of 240 x 24 x 4 m.

The navigation facilities are constructed by deep excavation into the bedrock and the maximum excava-
tion depths are 173.5, 140 and 86 m for the permanent shiplock, the shiplift and the temporary shiplock,
respectively. The dominant rock type is plagioclase granite, which is divided into four zones according
to the degree of weathering, viz., completely weathered (IV), highly weathered (III), moderately weathered
(1), slightly weathered and fresh (I). Benches are left during excavation and are usually 15 m high and 5 m
wide with a slope of 1 (vertical) to 1 (horizontal) for the completely and highly weathered zones, 1-0.5 for
the moderately weathered zones, and 1-0.3 or vertical for the slightly weathered and fresh zones. The
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Fig. 7. The layout of the navigation facilities for the TGP.

Center line

T

Shiplift
Chamber

Fig. 8. Rock distribution of a typical section in the temporary shiplock slope.

upright slopes are designed as walls of the navigation chambers for both the shiplocks and the shiplift. For
the permanent shiplock, the height of the upright slope is 50-70 m, for the temporary shiplock 29 m, and
for the shiplift 34-51 m (see cross-section in Fig. 8). A central rock barrier (or separation block) 55-57 m
wide and 50-70 m high is kept between the two channels of the permanent shiplock. Another central rock
barrier measuring 16-34 m wide and 23-26 m high is also left between the temporary shiplock and the ship-
lift chamber.

Such gigantic rock barriers and vertical walls are rare in the history of hydro-power construction. The
potential impact of rock deformation on the performance of the navigation facilities was duly recognized in
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the early project planning phase. Frequently asked questions pertained to the stability of the vertical walls
and the rock barriers after excavation. If they were safe and stable at the time of excavation, would their
long-term deformation affect the normal operation of the shiplocks and the shiplift? If they were unstable,
should the rock barriers be excavated and replaced by reinforced concrete barriers or kept in place but rein-
forced to maintain their safety? If reinforcement were feasible, what would be the optimum design and
parameters, and son on? To answer these questions, many studies were conducted during the design stage.
Most of the questions were satisfactorily answered. However, two conflicting opinions existed regarding the
deformation. Some researchers believed that the deformation would be just several centimeters, the same
magnitude as that calculated by the elastic finite element analysis, and hence the rock barrier could be stable
under some measures of reinforcement, but other researchers insisted that the deformation could be much
larger than the calculated value and the rock barrier could be unstable because the barriers might be nearly
completely damaged.

The key to answer the above questions lies in understanding the change in rock mass properties due to
excavation disturbance and in evaluating the mechanical properties of the disturbed zones. Comprehensive
investigations were hence conducted to determine the actual disturbed extent and the mechanical proper-
ties, and a finite element analysis of the rock deformation adjacent to the navigation facilities was carried
out by the authors, in collaboration with the Yangzte River Resources Commission (the designer), under
contract from the China Three Gorges Project Development Corporation (the owner).

The finite element model used for the analysis is shown in Fig. 9, with the axis x being in direction to the
downstream and the axis z to the upward vertical. Altogether there are 11,238 nodes and 10,066 block and
joint elements in the model. The parameters given by the designer for intact rock and joints are listed
respectively in Tables 1 and 2, for the various zones of rock depicted in Fig. 8, along with the loading
and in situ conditions. The rocks are considered to satisfy Drucker—Prager’s criterion. Two parameters o
and x in Drucker-Prager’s criterion are determined through letting Drucker—Prager’s criterion coincide
with Mohr—Coulomb’s criterion in the condition of the plane strain (Wang et al., 1982)

]

=

Fig. 9. Finite element model of the temporary shiplock after excavation.
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Table 1

Mechanical parameters of rocks

RC DW d(kN/m*)  E(GPa) v o, (MPa)  Co (MPa)  f, C, (MPa)  f,

Plagioclase granite SWF 27.0 40.0 0.22 1.5 1.8 1.8 0.7 1.3
MW 26.8 15.0 0.24 1.0 1.0 1.3 0.35 1.1
CHW 26.5 1.0 0.30 0.0 0.1 0.7 0.07 0.7

Note: RC =rock category, DW = degree of weathering; SWF =slightly weathered and fresh; MW = moderately weathered;
CHW = completely and highly weathered.

Table 2
Mechanical parameters of structural planes
Category ks (MPa/m) ky (MPa/m) Co (MPa) fo C, (MPa) I
Hard and thin infillings 3000 7500 0.20 0.70 0.10 0.6
Soft structural planes SWF, MW 1000 2500 0.18 0.60 0.12 0.5
CHW 1000 2500 0.12 0.40 0.07 0.35
t 3C
a:—g¢ 2’ K:—l/z. (45)
(9 + 12tg2¢) (9 + 121g2¢)

If C and ¢ are taken as the peak strength parameters Cy and ¢ = (g~ 'fy) in Table 1, respectively, the peak
strength surface of Drucker—Prager’s criterion can be obtained. For rock joints, we apply Mohr-Coulomb’s
criterion.

According to the in situ measurement carried out by the designer, the initial geostress field in the slight
weathered and fresh rock is characterized by the horizontal stresses being greater than the vertical stress
that is approximate to the stress due to the self-weight of rock mass. In computation, the geostress field
was hence represented through loading the self-weight in the vertical direction and the following distribu-
tion on the boundary of X = X

o, = 43982+ 0.01168H (MPa), (46)
Ty =Tn =0

and Y = Y.«
o, =4.68675 + 0.01168H (MPa), (7)
Txy = T}Z = 07

respectively, in which H represents the depth and f is the reduction factor defined as the ratio of the Young
modulus of a rock in the model to the Young modulus of the slightly weathered and fresh rock. The bound-
aries of X' = Xppax, ¥ = Ymin and Z = Z,,;;, are constrained in the normal and free in the tangential.

Staged excavation was simulated in the computation, with all relevant boundaries being constrained in
the normal. For each excavation, convergence can be arrived with finite iterations. That means that the en-
tire rock mass in the region would be stable during excavation.

Fig. 10 shows the disturbed zone computed for the rock barrier between the shiplift chamber and the
temporary shiplock chamber (see cross-section 3-3 in Fig. 10, and the layout in Fig. 7), for the three cases
of elastic analysis ( E), elasto-plastic analysis (EP) and elasto-brittle-plastic analysis (EBP), respectively. The
disturbed zone is defined as a stress-relieved, weakened zone produced by the excavation process,
corresponding to the zone of tension and shear damage (Deng et al., 2001). The field measured disturbed
zone is also shown in Fig. 10, for comparison purposes, which was determined in the field jointly by the
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Fig. 10. Damaged zones in the rock barrier.

North

Fig. 11. Deformation of a section after excavation.
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cross-hole seismic wave penetration testing and borehole elastic modulus testing (Deng et al., 2001). The
results of the brittle-plastic analysis appear to be closest to the field observation, among the results of

the three analyses.

Fig. 11 illustrates the deformation of a section after excavation based on the assumption of brittle-plas-
ticity. The rock barrier obviously inclines towards the North. Table 3 lists the deformation of some typical
points on the section shown in the Fig. 12 from three constitutive models. The differences of those points far
from the rock barrier and the upright walls are small, but the differences of those points—3, 6, 7 and 10, on
the tops of the barrier and the upright walls are obvious. The deformations are in the magnitude of cen-
timeter even if the rock mass is regarded as being in the worst case. The displacement measurements in situ

has verified these judgments.
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Table 3
Deformation of some typical points on the section shown in Fig. 12 (unit: cm)
Points E EP EBP

Hor* Ver Tot® Hor Ver Tot Hor Ver Tot
1 1.45 0.65 1.59 1.46 0.65 1.60 1.47 0.65 1.61
2 1.82 0.47 1.88 1.83 0.47 1.89 1.81 0.50 1.87
3 2.05 —0.04 2.05 2.08 0.04 2.08 2.23 0.26 2.24
4 0.66 0.16 0.68 0.65 0.15 0.66 0.65 0.13 0.66
5 —0.58 0.60 0.83 —0.59 0.58 0.83 —0.60 0.57 0.83
6 -1.37 0.63 1.51 —1.43 0.65 1.58 —1.53 0.84 1.74
7 —0.59 0.80 1.00 —0.55 0.82 0.99 —0.37 0.89 0.97
8 —0.65 0.79 1.02 —0.67 0.77 1.03 —0.69 0.80 1.06
9 —1.04 0.62 1.21 —1.05 0.61 1.21 —1.06 0.63 1.23
10 —1.90 0.46 1.95 -1.91 0.46 1.97 —-1.99 0.54 2.06
11 -1.93 1.14 2.24 —1.94 1.13 2.25 —1.94 1.15 2.25

# The deformation towards the South is positive (see in Fig. 11).
® Tot = (Hor? + Verz)'/z.

Fig. 12. Some typical points on a section in the model.

Although procedures based on phenomenological models including this study might not simulate strain
localization and crack development in rock mass, damaged zones, the degree of damage, the deformation of
rock mass, the global stability and many other useful data can be evaluated rather rationally. Zheng et al.
(2004) investigated the development of cracks in the rock barrier and the stability.

7. Conclusions

This paper proves that, within the framework of the classical theory of plasticity, there is a limit to the
rate of softening of a strain-softening material. A procedure for analyzing the abrupt change from the peak
strength surface to the residual strength surface is developed, based on the II'yushin’s postulate and the
plastic potential theory. The criterion of stability is formulated, which can be used to evaluate the ultimate
load of a brittle-plastic body acted by the given load distribution. The analytical and numerical procedure
thus developed has been validated with two simple examples, and the engineering application case of a steep
rock slope adjacent to the shiplock for the Three Gorges project in China.
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Although procedures based on phenomenological models including this study might not simulate some
details such as strain localization and crack development in rock mass, damaged zones, the degree of dam-
age, the deformation of rock mass, the global stability and many other useful data can be qualified quite
well.
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